This is Why … My Zen Space Sometimes Smells Like Cotton Candy

(Alt text – A cotton candy vendor walking under the forest canopy during a morning in Bardiya National Park in Nepal, light filtering through the canopy. By Gaurav Aryal, Shutterstock.com)

Like everyone else, the start of the new school year has been incredibly stressful for me. Going for walks in the arboretum on campus has been a huge coping mechanism, especially on the days when I just want to go home and curl up in a ball with the blankets over my head.

The arboretum is a spectacular sight this time of year, with maples, birches, and beeches showing off in russets, scarlets, and golds. But there’s a quiet little grove in the middle of this amazing space that also has a treat for your nose: if you’re standing in the right spot and inhale deeply, be ready for caramel, fresh-out-of-the-oven cake cooling on the counter, or, in my opinion, cotton candy. The source of this incredible scent is the katsara tree (Cercidiphyllum japonicum), a tree native to Japan and China that was imported to North America in the mid-1800s.

close up of yellowy-green, heartshaped leaves on the katsura tree with blurred greenery in the background, By imacoconut, Shutterstock.com

As the heart-shaped leaves begin to turn from green to yellow to brown every autumn, an aromatic molecule called maltol is released to the air, in concentrations high enough that it can smell like walking past the waffle station at your favourite brunch spot. The scent is so strong and so distinctive that katsuras are known as “kuchenbaum” (cake tree) in German or “arbre à caramel” (caramel tree) in French.

chemical structure of Maltol, also known as 3-Hydroxy-2-methyl-4H-pyran-4-one, from Wikimedia – public domain (File:3-hydroxy-2-methyl-4H-pyran-4-one 200.svg - Wikimedia Commons)

Maltol, chemical formula C6H6O3, occurs naturally in certain foods like coffee and cocoa, getting converted from sugars to this amazing smelling molecule in the baking or roasting process. Maltol is also found in pine needles, the bark of larch trees, and red ginseng. The white crystalline powder with the butterscotch fragrance is extensively used in the food industry as a flavouring agent as well as an additive in perfumes.

When I first noticed the smell a few years ago, I was honestly completely baffled. It was always in the same spot but it wasn’t always noticeable. Some days it would be incredibly strong but then months would go by without the slightest whiff. Looking around for the source of the scent, there are no flowers (or bakeries) in sight. But, with the help of the arboretum signage and Google, the mystery was revealed. And I was greatly relieved to find out that I wasn’t having some kind of stress-induced olfactory hallucination!

With a little digging, I found myself reading about some pretty incredible properties of this deliciously scented molecule. Researchers are exploring its antioxidant capabilities and its potential application in treating a huge array of concerns, from liver disease to osteoarthritis, glaucoma to bacterial resistance to common antibiotics. Among other functions, maltol works to control the amount of metal in the human body, forming stable complexes with metallic ions like Al+3, Fe+3, Zn+2, etc. Some of these complexes have been investigated as possible treatments for anemia, Alzheimer’s, cancer, and diabetes. So it turns out that my favourite spot to destress in the arboretum is full of amazing science, right under my nose.

References

Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice. Ye Han, Qi Xu, Jiang-ning Hu, Xin-yue Han, Wei Li and Li-chun Zhao Nutrients 20157(1), 682-696

Novel Synthesis of Maltol Capped Copper Nanoparticles and Their Synergistic Antibacterial Activity with Antibiotics. Naqvi et al 2021 Plasmonics https://doi.org/10.1007/s11468-021-01452-3

Maltol prevents the progression of osteoarthritis by targeting PL3K/Akt/NF-kB pathway: in vitro and in vivo studies. Lu et al 2021 J Cell Mol Med25: 499-509 https://doi.org/10.111/jcmm.16104

Published by joanneomeara

Professor, Department of Physics, University of Guelph

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: